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Reaction, Lévy flights, and quenched disorder

Ligang Chen and Michael W. Deem
Department of Chemical Engineering, University of California, Los Angeles, California 90095–1592
~Received 9 July 2001; revised manuscript received 8 August 2001; published 19 December 2001!

We consider theA1A→B reaction, where the transport of the particles is given by Le´vy flights in a
quenched random potential. With a common literature model of the disorder, the random potential can only
increase the rate of reaction. With a model of the disorder that obeys detailed balance, however, the rate of
reaction initially increases and then decreases as a function of the disorder strength. The physical behavior
obtained with this second model is in accord with that for reactive turbulent flow, indicating that Le´vy flight
statistics can model aspects of turbulent fluid transport.
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I. INTRODUCTION

Lévy flights have been used to model a variety of physi
processes, such as epidemic spreading@1#, self-diffusion in
micelle systems@2#, and transport in heterogeneous roc
@3#. Lévy flights are essentially a generalization of ordina
Brownian walks. The normalized step size distribution
Lévy flights in d dimensions is

P~r !ddr 5
f r 0

f

Sd
r 212 fdr dV, ~1!

wherer is the step size,f is the step index,Sd52pd/2/(d/2
21)!, andr 0 is a lower microscopic step cutoff. In the ca
of f 52, we recover Brownian motion. However, forf ,2,
the distribution of step sizes exhibits a long-range algeb
tail that corresponds to large but infrequent steps, so ca
rare events. Due to these rare, large steps, the mean squ
step size deviation diverges, and the central limit theor
does not hold. The rare, large step events prevail and d
mine the long-time behavior. The dynamic exponentz that
characterizes the mean square displacement as a functi
time by^r 2(t)&;const3t2/z depends on the microscopic ste
index f according to the relationshipz5 f , indicating anoma-
lous enhanced diffusion, that is, superdiffusion.

It is well known that quenched random disorder leads t
subdiffusive behavior in two-dimensional Brownian walk
Lévy flights in such random environments have attracted
creasing attention recently. The interplay between the ‘‘bu
in’’ superdiffusive behavior of the Le´vy flights and the effect
of the random environment generally leading to subdiffus
behavior has been examined@4–6#. Surprisingly, ane expan-
sion shows that in the models of random potential disor
examined to date, the dynamic exponentz locks onto the
Lévy flight index f in any dimension, regardless of the ran
or strength of disorder~notwithstanding some claims regar
ing divergence-free disorder in@6#!.

The behavior of chemical reactions with random poten
@7,8# and isotropic turbulence disorder@9,10# has been exam
ined. Reactants diffusing according to Le´vy flight statistics
have also been studied in a model of branching and ann
lating processes@11#. In general, potential disorder tends
slow down the diffusing reactants. Since these reactions t
cally become transport limited at long times, potential dis
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der tends to slow down the reaction as well. It was fou
however, that a small amount of potential disorder added
the turbulent fluid mixing leads to an increased rate of re
tion. This phenomenon of ‘‘superfast’’ reaction occurs b
cause the disorder traps reactants in local potential we
which quadratically increases the local reaction rate, wh
the turbulence rapidly replenishes the reacting species
these regions. As the potential disorder is increased, eve
ally the rate of reaction decreases, due to a slowing of
transport. It is interesting to study the behavior of reacta
following Lévy flight statistics in quenched random disorde
The question is: Can the Le´vy statistics mimic rapid turbu-
lent transport and so lead to superfast reaction? Furtherm
do the reactions become transport limited or reaction limi
at long times?

In this paper, we analyze two different models of the d
order. A conventional literature model, which does not s
isfy detailed balance, is discussed in Sec. II. A propos
model that does satisfy detailed balance is discussed in
III. We study the effect of Le´vy flight statistics and quenche
random disorder on the simple bimolecular recombinat
reaction in two dimensions. We focus on the physica
meaningful two-dimensional case because the effects di
pear above the upper critical dimension that is near two
because other, exact methods of analysis are probably m
appropriate in one dimension. Detailed results of the fi
theoretic renormalization are presented. We conclude this
per in Sec. IV.

II. REACTION IN A COMMON LITERATURE MODEL
OF DISORDER

Including the normal diffusion term, the Fokker-Planc
equation for Le´vy flights in a quenched potential field ha
been modeled by@4–6#

]G~r ,t !

]t
5D2¹2G~r ,t !1D f~¹2! f /2G~r ,t !

1“@G~r ,t !“V~r !#, ~2!

where (¹2) f /2 is interpreted as the inverse Fourier transfo
of 2kf , which is a spatially nonlocal integral operator r
flecting the long-range character of the Le´vy steps with mi-
©2001 The American Physical Society09-1
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LIGANG CHEN AND MICHAEL W. DEEM PHYSICAL REVIEW E 65 011109
croscopic step indexf. Fourier transforms are defined a
f̂ (k)5*ddx eik•xf (x). The last term on the right hand side
Eq. ~2! is a drift term due to the motion of the walker in th
force field. We assume a Gaussian distribution of the rand
potential force fieldV(r ) with correlation

^V~k1!V~k2!&5
g

k21y
~2p!dd~k11k2!. ~3!

Note that the strength of disorder is parametrized byg,
whereas the range is parametrized byy.

The reaction we are considering is

A1A→
l

B. ~4!

A field theory is derived by identifying a master equation a
using the coherent state mapping@12#. The random potentia
is incorporated with the replica trick@13#. The action within
the field theory is

S5E ddxE
0

t f
dt āi~x,t !@] t2D f~¹2! f /2

2D2¹21d~ t !#ai~x,t !

1
l

2E ddxE
0

t f
dt@2āi~x,t !ai

2~x,t !

1āi
2~x,t !ai

2~x,t !#2n0E ddx āi~x,0!

2
g

2E dt1dt2E
k1k2k3k4

~2p!dd~k11k21k31k4!

3
k1•~k11k2!k3•~k31k4!

uk11k2u21y

3 â̄i~k1 ,t1!âi~k2 ,t1! â̄ j~k3 ,t2!â j~k4 ,t2!. ~5!

Summation is implied over all replica indices that appe
The notation*k stands for*ddk/(2p)d.

The concentration of the reactantA at time t, averaged
over the initial conditions, is given by

FIG. 1. ~a! Diagram representing the propagator. The arr
points in the direction of increasing time, and double lines repres
the bar fields.~b! Normal diffusion vertexD2. ~c!, ~d! Reaction
verticesl. ~e! Disorder vertexg.
01110
m

r.

cA~x,t !5 lim
N→0

^ai~x,t !&, ~6!

where the average is taken with respect to exp(2S).
To apply the field theoretic renormalization procedure,

action is recast@14# as

S5E ddxE
0

t f
dt āi~x,t !@] t2ZfD f R~¹2! f /2

2m f 22Z2D2RD f R¹21d~ t !#ai~x,t !

1
1

2
m f 2dZllRD f RE ddxE

0

t f
dt@2āi~x,t !ai

2~x,t !

1āi
2~x,t !ai

2~x,t !#2mdn0RE ddx āi~x,0!

2
1

2
meZggRD f R

2 E dt1 dt2E
k1k2k3k4

~2p!d

3d~k11k21k31k4!
k1•~k11k2!k3•~k31k4!

uk11k2u21y

3 â̄i~k1 ,t1!âi~k2 ,t1! â̄ j~k3 ,t2!â j~k4 ,t2!, ~7!

where the renormalization constantsZf , Z2 , Zl , and Zg
have been introduced to absorb the UV divergences of
model. The parameters,D f R , D2R , lR , andgR are the di-
mensionless expansion parameters of the model. Since
Lévy flight term D f R(¹2) f /2 is the most important term, it is
chosen as the dimensionless free term, i.e., the propagat
@] t2D f R(¹2) f /2#21. Note, we are not allowed to treat th
regular diffusion term as the free term, as this violates
physics of the scaling and leads to a diverging renormali
D f . Now, the critical dimension following from standar
power counting ofgR is dc52 f 1y22, and we introduce for
an e expansione5dc2d. The scale-setting wave numbe
parameter is denoted bym, and we assign the dimensions
the rest of the terms accordingly.

The connections between the renormalized and unre
malized parameters are

ZfD f R5D f

m f 22Z2D2RD f R5D2

m f 2dZllRD f R5l

mdn0R5n0

meZggRD f R
2 5g. ~8!

To one-loop order, self-energy diagrams and vertex d
grams are summarized in Figs. 1 and 2. We may be tem
to use the momentum-shell renormalization procedure h
However, due to the difficulty of regularizing this action, th
first self-energy diagram would incorrectly contribute toD2R
by the momentum-shell renormalization, rather than toD f R
by the field theoretic renormalization that is consistent w

nt
9-2
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REACTION, LÉVY FLIGHTS, AND QUENCHED DISORDER PHYSICAL REVIEW E65 011109
perturbation theory. In the evaluation of the diagram in F
2~a!, it is important to treat the external momentum exac
If a series expansion in the external momentum is perform
on the integrand, rather than on the result of the integral
incorrect contribution toZ2 arises. Interestingly, when th
diagram in Fig. 2~a! is evaluated, only a finite contribution t
Zf results. The complete calculation shows

Zf51

Z2512
~2 f 23!g

4pe

Zl512
gR

2pe
1

lR

4p~ f 2d!

Zg511
gR

2pe
, ~9!

where a double pole expansion, 1/e and 1/(f 2d), is used in
the calculation ofZl . The use of the double pole expansio

FIG. 2. One-loop diagrams:~a! Self-energy diagram contribut
ing to D f ; ~b! self-energy diagram contributing toD2; ~c!, ~d!, and
~e! vertex diagrams contributing tog; ~f!, ~g!, ~h!, and ~i! vertex
diagrams contributing tol.
01110
.

.
d
n

in two dimensions means we considerf just slightly smaller
than 2 andy small. As usual, theb functions defined by

bD2R
5m

]

]m
D2R

blR
5m

]

]m
lR

bgR
5m

]

]m
gR ~10!

give the flow equations in two dimensions as

dD2R

dl
52bD2R

5~ f 22!D2R1
~2 f 23!gRD2R

4p

dlR

dl
52blR

5~ f 22!lR1
gRlR

2p
2

lR
2

4p

dgR

dl
52bgR

5egR2
gR

2

2p
, ~11!

where we use the relationm5L/el , andL is a microscopic
cutoff. SinceZf51, the reaction and disorder terms do n
affect the dynamic exponent, andz5 f . We determine the
long-time decay from the flow equation via matching
short-time perturbation theory. The flow equations are in
grated to a short time such that

t~ l * !5t expF2E
0

l*
z~ l !dlG5t0 . ~12!

At short times, we find the mean square displacement o
unreactive particle from̂r 2

„t( l * ),l * …&54D ft( l * ), and the
concentration of reactants from cA„t( l * ),l * …
5$@n0R( l * )Ld#211D flR( l * )L f 22t( l * )%21. The long-time
asymptotic values are given by scaling,̂ r 2(t)&
5e2l* ^r 2

„t( l * ),l * …&, andcA(t)5e22l* cA„t( l * ),l * ….
We first investigate the behavior ofD2R . As we will see

below, the fixed point forgR is max(0,2pe). Using this re-
sult, we see thatD2R flows exponentially to zero as long a
y,4(22 f ), whenf is near 2. Likely, a higher loop calcula
tion would extend the region in whichD2R flows to zero.
Thus, at least within the region in which our flow equatio
apply, D2R always flows to zero in the presence of Le´vy
flights. It is, therefore, unnecessary to introduce such a n
mal diffusion term in the model.

For e,0, i.e., in region I of Fig. 3, there is only a set o
trivial stable fixed points,gR* 50 andlR* 50, for the system.
The matching procedure gives the normal concentration
cay as

cA~ t !;
1

lt
. ~13!

In the region ofe.0, gR* 52pe is the nontrivial fixed
point. But depending on the value ofd53 f 1y26, the
9-3
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matching procedure yields different results. Ford,0, i.e., in
region II of Fig. 3, there is no nontrivial fixed point forlR .
The corresponding asymptotic concentration decay is a l
faster than that in region I,

cA~ t !;
1

t0
S 1

l
1

1

4puduD fL
f 22D S t

t0
D 2[22udu]/ f

. ~14!

For d.0, i.e., in region III of Fig. 3,lR* 54pd is the fixed
point. The asymptotic concentration decay is the fastest

cA~ t !;
1

4pdD fL
f 22t0

S t

t0
D 22/f

. ~15!

The relationship between the concentration decay expo
a and disorder rangey at a fixed value off is plotted in Fig
4. Note that the strength of the disorder has no effect wh
soever on the concentration decay.

The reader will note that the disorder can never sl
down the reaction in this model. This is quite an unexpec
result, as these reactions are expected to become tran
limited at long times, and disorder should slow down t
transport. Model I, Eq.~2!, is somewhat unphysical in tha
this cannot happen due to the lack of disorder contribution
Zf .

III. REACTION IN A MODEL OF DISORDER THAT
OBEYS DETAILED BALANCE

Although Eq.~2! is often used in the literature, it does n
guarantee a long-time Boltzmann distribution forG(r ,t).
That is, this form of the disorder does not satisfy detai
balance. A more natural form of the Fokker-Planck equat
for Lévy flights in random disorder is

]G~r ,t !

]t
5¹ f 21@D f“G~r ,t !1G~r ,t !“V~r !#, ~16!

FIG. 3. Different regions predicted by the flow equations for t
Lévy flight system with disorder model I in two dimensions. Th
flow equations are accurate for smally and f slightly less than 2.
The flow equations do not apply in region IV.
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le

nt

t-

d
ort

o

d
n

where ¹ f 21 is the inverse Fourier transform of2 ik f 22k.
Equation ~16! can be interpreted as a modification of th
continuity equation to take into account the long-range tra
port induced by the Le´vy flights; it is derived in the Appen-
dix. With the same form of the correlation function for th
potential, Eq.~3!, we have

S5E ddxE
0

t f
dt āi~x,t !@] t2D f~¹2! f /21d~ t !#ai~x,t !

1
l

2E ddxE
0

t f
dt@2āi~x,t !ai

2~x,t !1āi
2~x,t !ai

2~x,t !#

2n0E ddx āi~x,0!2
g

2E dt1dt2E
k1k2k3k4

~2p!d

3d~k11k21k31k4!

3
k1

f 22k3
f 22k1•~k11k2!k3•~k31k4!

uk11k2u21y

3 â̄i~k1 ,t1!âi~k2 ,t1! â̄ j~k3 ,t2!â j~k4 ,t2!. ~17!

Again, to apply the field-theoretic renormalization proc
dure, the action is recast as

S5E ddxE
0

t f
dt āi~x,t !@] t2ZfD f R~¹2! f /21d~ t !#ai~x,t !

1
1

2
m f 2dZllRD f RE ddxE

0

t f
dt@2āi~x,t !ai

2~x,t !

1āi
2~x,t !ai

2~x,t !#2mdn0RE ddx āi~x,0!

2
1

2
meZggRD f R

2 E dt1 dt2E
k1k2k3k4

~2p!dd~k11k2

1k31k4!
k1

f 22k3
f 22k1•~k11k2!k3•~k31k4!

uk11k2u21y

3 â̄i~k1 ,t1!âi~k2 ,t1! â̄ j~k3 ,t2!â j~k4 ,t2!, ~18!

where,dc521y, e5dc2d, and the rest of the paramete
are the same as in action I.

The connections between the renormalized and unre
malized parameters are

ZfD f R5D f

m f 2dZllRD f R5l

mdn0R5n0

meZggRD f R
2 5g. ~19!
9-4



d

la

t i
t

io
on
a

er
-

e
tible
w
o

w

s

y

he
sig-
and
tial

-
ed

-
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The diagrams are the same as those in Figs. 1 an
except that the diagrams from normal diffusion, Figs. 1~b!
and 2~b!, are not present. A one-loop diagrammatic calcu
tion gives

Zf511
gR

4pe

Zl512
gR

2pe
1

lR

4p~ f 2d!

Zg511
gR

2pe
, ~20!

where a double-pole expansion of 1/e and 1/(f 2d) is used
in the calculation ofZl .

The dynamic exponent is given by

z5 f 2m
]

]m
ln Zf5 f 1

gR

4p
. ~21!

This suggests that the Le´vy flights are significantly slowed
by the presence of the new random disorder term. Tha
when the detailed balance is obeyed, the disorder affects
dynamical exponent.

Theb functions give us the flow equations fromZi in two
dimensions as

dlR

dl
52blR

5~ f 22!lR1
3gRlR

4p
2

lR
2

4p

dgR

dl
52bgR

5egR . ~22!

This action is well behaved, and there is no regularizat
difficulty. And indeed, both momentum-shell renormalizati
and field-theoretic renormalization yield identical flow equ
tions to one-loop order. From the flow equations, fore.0,
gR flows to `, indicating that the disorder dominates ov
the Lévy flights. Fore,0, gR flows to zero, indicating trans

FIG. 4. Decay exponent for theA1A→B reaction in the Le´vy
flight system with disorder model I in two dimensions:cA(t)
;const3t2a.
01110
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port of Lévy flights dominates over the disorder. This sam
behavior, that the disorder must be adjusted to be compa
with the transport, was found in the turbulent reactive flo
problem @10#. An interesting system arises when those tw
effects are competitive, and so we requiree50, i.e., y50.
Under this constraint,gR5g/D f

2 does not flow. Very likely,
this result holds to all orders. Further analysis of the flo
equation for lR indicates two regimes. Forg/D f

2.4(2
2 f )p/3, or strong disorder,lR has a stable nontrivial fixed
point, given by

lR* 54p~ f 22!1
3g

D f
2

5l* L22 f /D f . ~23!

Following the matching procedure, we have

cA~ t !;
1

l* t
S t

t0
D 22/[ f 1g/(4pD f

2)] 11

. ~24!

However, forg/D f
2,4(22 f )p/3, or weak disorder, there i

no nontrivial fixed point forlR , and we have

cA~ t !;S 1

l
1

1

@4p~22 f !23g/D f
2#L f 22D f

D
3

1

t S t

t0
D 2[g/(2pD f

2)]/[ f 1g/(4pD f
2)]

. ~25!

For the special case ofg/D f
254(22 f )p/3, lR decays mar-

ginally, and we have a logarithmic correction to the deca

cA~ t !;
3 ln~ t/t0!

8pD fL
f 22~11 f !t

S t

t0
D 2(22 f )/(11 f )

. ~26!

In the present case, unlike with the action of Sec. II, t
range and strength of disorder affect the decay exponent
nificantly. The relationship between the decay exponent
g is plotted in Fig. 5. We see that a small amount of poten

FIG. 5. Decay exponent for theA1A→B reaction in the Le´vy
flight system that obeys detailed balance in two dimensions:cA(t)
;const3t2a. The figure is shown forf 51.9. The reaction is trans
port limited on the solid curve and reaction limited on the dash
curve. Note that the regiona.1 corresponds to ‘‘superfast’’ reac
tion.
9-5
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LIGANG CHEN AND MICHAEL W. DEEM PHYSICAL REVIEW E 65 011109
disorder leads to an increased rate of reaction in the L´vy
flights. But as the potential disorder increases further, the
of reaction eventually decreases. This figure is very m
similar to the one that showed up in the study of react
turbulent flow@9#. In fact, if the Lévy flight parameters are
related to the turbulence parameters@9# as f 522gs* andg
54pD f

2gg* , these two models predictexactlythe same con-
centration decays. As suggested in@9#, in order for the reac-
tion to occur, multiple reactants must be trapped in region
low potential energy. After the trapped reactants are deple
new reactants must be replenished by rapid transport to
tinue the reaction. Certain combinations of fast transporf
,2, and disorderg lead to ‘‘superfast’’ reaction,a.1, as
shown in Fig. 5. Interestingly, this result means that the
homogeneous system can have a faster reaction rate tha
homogeneous, well-mixed system.

IV. CONCLUSION

We have analyzed theA1A→B reaction in two-
dimensional Le´vy flight systems using two models of ran
dom disorder. For a common model in the literature,
dynamic exponent always locks to the microscopic step
dex f, and the reaction decay exponent varies between 1
2/f . This surprisingly unphysical result that the disorder ca
not slow down the reaction is due to the fact that this mo
does not satisfy detailed balance. For a model that does
isfy detailed balance, on the other hand, the disorder can
does modify the transport properties of the system. When
disorder is adjusted to be compatible with Le´vy flight statis-
tics, the reaction decay exponent first rises above unity
then drops to zero as the strength of disorder is increa
These results are identical to those from reactive turbu
flow, and this harmony suggests that Le´vy flights, properly
interpreted, can be a viable model of turbulent fluid tra
port.
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APPENDIX

In this appendix, we derive Eq.~16! from a master equa
tion. Particle transport by Le´vy flight statistics can be mod
eled by hopping dynamics of particles in space. The hopp

@1# D. Mollison, J. R. Stat. Soc. Ser. B Methodol.39, 283 ~1977!.
@2# A. Ott, J.P. Bouchaud, D. Langevin, and W. Urbach, Ph

Rev. Lett.65, 2201~1990!.
@3# J. Klafter, A. Blumen, G. Zumofen, and M.F. Shlesinge

Physica A168, 637 ~1990!.
@4# H.C. Fogedby, Phys. Rev. E58, 1690~1998!.
@5# J. Honkonen, Phys. Rev. E53, 327 ~1996!.
@6# J. Honkonen, Phys. Rev. E62, 7811~2000!.
@7# J.-M. Park and M.W. Deem, Phys. Rev. E57, 2681~1998!.
@8# J.-M. Park and M.W. Deem, Phys. Rev. E57, 3618~1998!.
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rate in the absence of an external potential is simply prop
tional to Eq.~1!. In the presence of an external potential, w
modify this rate in a way that satisfies detailed balance@15#,

a~ro→rn!5~D f /r 0
f !P~rn2ro!exp$2b@V~rn!2V~ro!#/2%,

~A1!

wherea(ro→rn) is the rate at which particles hop fromro to
rn . The master equation for the Green’s function of this p
cess is

]G~r !

]t
5E ddx a~r2x→r !G~r2x!

2E ddx a~r→r1x!G~r !. ~A2!

We now expand this master equation to first order inb, i.e.,
we look for a Fokker-Planck equation that is linear in t
potential. Noting thatP̂(k)512r 0

f kf , we find

]Ĝ~k!

]t
52D fk

fĜ~k!2
bD f

2 E
h
Ĝ~k2h!V̂~h!

3@kf1hf2uk2hu f #1O~b2!. ~A3!

In real space, we would write this equation as

]G~r !

]t
5D f~¹2! f /2G1

bD f

2
@~¹2! f /2~GV!1G~¹2! f /2V

2V~¹2! f /2G#. ~A4!

Since we are interested in how the long-wavelength featu
of the potential affect the dynamics, i.e., we take into acco
only the small wave vector contributions in Eq.~3!, we make
an expansion of Eq.~A3! for small h. We find (kf1hf2uk
2hu f)/2; f kf 22k•h/2 for 1, f <2. Realizing that the
Green’s function should relax to the Boltzmann distributi
at long times, and thatD f andb may be renormalized by a
finite amount by a variety of irrelevant operators, we co
clude that the proper long-wavelength theory should be

]Ĝ~k!

]t
52D fk

fĜ~k!2bD fE
h
Ĝ~k2h!V̂~h!kf 22k•h,

~A5!

which is exactly Eq.~16! with units of bD f inserted.
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