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Reaction, Levy flights, and quenched disorder
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We consider theA+A—J reaction, where the transport of the particles is given byylL#ights in a
guenched random potential. With a common literature model of the disorder, the random potential can only
increase the rate of reaction. With a model of the disorder that obeys detailed balance, however, the rate of
reaction initially increases and then decreases as a function of the disorder strength. The physical behavior
obtained with this second model is in accord with that for reactive turbulent flow, indicating tagtfligt
statistics can model aspects of turbulent fluid transport.
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I. INTRODUCTION der tends to slow down the reaction as well. It was found,
however, that a small amount of potential disorder added to
Levy flights have been used to model a variety of physicalhe turbulent fluid mixing leads to an increased rate of reac-
processes, such as epidemic spreadlifjg self-diffusion in  tion. This phenomenon of “superfast” reaction occurs be-
micelle systemg2], and transport in heterogeneous rockscause the disorder traps reactants in local potential wells,
[3]. Levy flights are essentially a generalization of ordinarywhich quadratically increases the local reaction rate, while
Brownian walks. The normalized step size distribution forthe turbulence rapidly replenishes the reacting species to
Levy flights in d dimensions is these regions. As the potential disorder is increased, eventu-
ally the rate of reaction decreases, due to a slowing of the
transport. It is interesting to study the behavior of reactants
following Lévy flight statistics in quenched random disorder.
The question is: Can the kg statistics mimic rapid turbu-
wherer is the step sizef is the step indexS;=27%%/(d/2  lent transport and so lead to superfast reaction? Furthermore,
—1)!, andr, is a lower microscopic step cutoff. In the case do the reactions become transport limited or reaction limited
of f=2, we recover Brownian motion. However, fox2, at long times?
the distribution of step sizes exhibits a long-range algebraic In this paper, we analyze two different models of the dis-
tail that corresponds to large but infrequent steps, so calle@rder. A conventional literature model, which does not sat-
rare events Due to these rare, large steps, the mean squariéfy detailed balance, is discussed in Sec. Il. A proposed
step size deviation diverges, and the central limit theorentnodel that does satisfy detailed balance is discussed in Sec.
does not hold. The rare, large step events prevail and detelil. We study the effect of Ley flight statistics and quenched
mine the long-time behavior. The dynamic exponerthat ~ random disorder on the simple bimolecular recombination
characterizes the mean square displacement as a function igfaction in two dimensions. We focus on the physically
time by(r?2(t))~ consix t? depends on the microscopic step meaningful two-dimensional case because the effects disap-
indexf according to the relationship= f, indicating anoma- pear above the upper critical dimension that is near two and
lous enhanced diffusion, that is, superdiffusion. because other, exact methods of analysis are probably more
It is well known that quenched random disorder leads to @ppropriate in one dimension. Detailed results of the field
subdiffusive behavior in two-dimensional Brownian walks. theoretic renormalization are presented. We conclude this pa-
Lévy flights in such random environments have attracted inPer in Sec. IV.
creasing attention recently. The interplay between the “built-
in” superdiffusive behavior of the Eg/ flights and the effect Il. REACTION IN A COMMON LITERATURE MODEL
of the random environment generally leading to subdiffusive OF DISORDER
behavior has been examingt-6]. Surprisingly, are expan-
sion shows that in the models of random potential disorder Including the normal diffusion term, the Fokker-Planck
examined to date, the dynamic exponeniocks onto the €equation for Ley flights in a quenched potential field has
Lévy flight indexf in any dimension, regardless of the range been modeled b4 —6]
or strength of disordefnotwithstanding some claims regard-
ing divergence-free disorder [i6]). aG(r,t)

f

fr
P(r)dir=—2r~1-fdrdQ, (1)
Sq

— 2 2\f/2
The behavior of chemical reactions with random potential a DaVoG(r,t)+Dy(V) G(r,1)
[7,8] and isotropic turbulence disordg®,10] has been exam-
ined. Reactants diffusing according towyeflight statistics +V[G(r,t)VV(r)], i)

have also been studied in a model of branching and annihi-

lating processefl1]. In general, potential disorder tends to where (V?)"? is interpreted as the inverse Fourier transform
slow down the diffusing reactants. Since these reactions typief —k', which is a spatially nonlocal integral operator re-
cally become transport limited at long times, potential disor-flecting the long-range character of théviyesteps with mi-
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—_————e—— CA(X,t): ||m <ai(X,t)>, (6)
a N—O
b d where the average is taken with respect to exg)(
e

To apply the field theoretic renormalization procedure, the
action is recast14] as

c

t J—
szf ddxjofdtai(x,t)[&t—ZfoR(Vz)”z

FIG. 1. (@) Diagram representing the propagator. The arrow
points in the direction of increasing time, and double lines represent
the bar fields.(b) Normal diffusion vertexD,. (c), (d) Reaction 1 tf o
vertices\. (€) Disorder vertexy. + E,u,f_dZ)\)\RDfRf ddxfO dt[2ai(x,t)ai2(x,t)

— ' 72Z,D5rD 1RV 8() Jay(X,t)

croscopic step indexX. Fourier transforms are defined as - , . =
f(k) = fd% €k *f(x). The last term on the right hand side of +ai(x,Hai(x,t)]—u nORJ d"xa;(x,0)
Eq. (2) is a drift term due to the motion of the walker in the

force field. We assume a Gaussian distribution of the random .7 D2 | dt.d 2.\
potential force fieldV(r) with correlation ¥ 4yvRDir| Audl | (2m)
1%2R3%4
Ky- (Ky+Ky)Ks- (Ks+Kyg)
B Y d \ 1 1 2)R3 3 4
VKV = T 2miak G @) AR Y
Note that the strength of disorder is parametrized gy xay(Ky,t1)ai(Ky,t1)aj(Ks, tp)aj(ka,tp), ™

whereas the range is parametrizedyby

The reaction we are considering is where the renormalization constardfs, Z,, Z,, and Z,

have been introduced to absorb the UV divergences of the
\ model. The parameter®g, D,g, Ag, and yg are the di-
A+AT. (4) m}ensionless expansion parameters of the model. Since the
Lévy flight term D;x(V?)"? is the most important term, it is
gchosen as the dimensionless free term, i.e., the propagator is
[8,—D¢r(V?)"?]71. Note, we are not allowed to treat the
regular diffusion term as the free term, as this violates the
physics of the scaling and leads to a diverging renormalized
D:. Now, the critical dimension following from standard
power counting ofyg isd.=2f +y—2, and we introduce for

Afield theory is derived by identifying a master equation an
using the coherent state mappirig]. The random potential
is incorporated with the replica tridk.3]. The action within
the field theory is

tf J—
S=f ddxf dta(x,t)[d,— Ds(V?)2 an e expansione=d.—d. The scale-setting wave number
0 parameter is denoted hy, and we assign the dimensions to
—D,V2+8(t)]a;(x,t) the rest of the terms accordingly.

The connections between the renormalized and unrenor-

A a4 — ) malized parameters are
+ > d [ dt[2a;(x,t)ai(x,t)
0 Z¢Dr=Dy

+aZ(x,t)a(x,t)]—ng f da;(x,0) ©'2Z,D,rDir=D,

f—d _
pm' T Z\NgDigr=A\
—%f dtldtzf (27)98(ky + kot kgt kg) NIRTIR
Kykokaks

©%nor=ng
kq-(ki+ko)ks- (kg+ky) €
Sl T ®
[ky+ko|*™Y
o R - R To one-loop order, self-energy diagrams and vertex dia-
X ai(kq,ty)ai(ka,t1)a)(ks,t2)aj(Kye,ts). (5) grams are summarized in Figs. 1 and 2. We may be tempted

to use the momentum-shell renormalization procedure here.
Summation is implied over all replica indices that appearHowever, due to the difficulty of regularizing this action, the

The notationf, stands forfd%/(2)¢. first self-energy diagram would incorrectly contributeligg
The concentration of the reactaAtat timet, averaged by the momentum-shell renormalization, rather thaDig
over the initial conditions, is given by by the field theoretic renormalization that is consistent with
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in two dimensions means we considgust slightly smaller
than 2 andy small. As usual, thg8 functions defined by
B d
ﬂDZR_MﬁDZR
a J
,BAR:M@)\R
_ J
ByR_luﬁyR (10
d

give the flow equations in two dimensions as

dDyg (2f—=3) yrD2r

>i>~M< ar ~ Poen (1720Pert
dx A \2
; SE =~ Brg= (- 2nr TR 2

d 27 4m

dyr Ygz
>©< >©K APy )

where we use the relation=A/e', andA is a microscopic

cutoff. SinceZ;=1, the reaction and disorder terms do not
affect the dynamic exponent, arm=f. We determine the
long-time decay from the flow equation via matching to
short-time perturbation theory. The flow equations are inte-
grated to a short time such that

h i *
t(l*)ztexp[—f' 2(1)dl
0

FIG. 2. One-loop diagramga) Self-energy diagram contribut-
ing to D¢ ; (b) self-energy diagram contributing f,; (c), (d), and
(e) vertex diagrams contributing tg; (f), (9), (h), and (i) vertex At short times, we find the mean square displacement of an
diagrams contributing ta. unreactive particle frondr2(t(1*),1*))=4D;t(I*), and the

concentration of reactants from ca(t(1),1*)
perturbation theory. In the evaluation of the diagram in Fig.={[nog(I*)A%] 1+ DAg(I*)AT2t(1*)} 1. The long-time
2(a), it is important to treat the external momentum exactly.asymptotic values are given by scaling(r?(t))
If a series expansion in the external momentum is performed. ez'*(rz(t(l*),l*)), anch(t)ze‘z'*cA(t(I*),I*).
on the mtegraqd, r.ather than on the result.of the integral, an \yse first investigate the behavior 6f,. As we will see
mcorrect.cor.\trlbutlpn taZ, arises. Inter_e§t|ngly, \{vhe'n the below, the fixed point foryg is max(0,2re). Using this re-
diagram in Fig. 2a) is evaluated, only a finite contribution to sult, we see thab g flows exponentially to zero as long as

Z; results. The complete calculation shows y<4(2—f), whenf is near 2. Likely, a higher loop calcula-
tion would extend the region in whicb,g flows to zero.

Zi=1 Thus, at least within the region in which our flow equations
apply, D, always flows to zero in the presence ofwye
_ . (2f=3)y flights. It is, therefore, unnecessary to introduce such a nor-
2 47e mal diffusion term in the model.
For e<0, i.e., in region | of Fig. 3, there is only a set of
L TR, AR trivial stablg fixed point3y§_=0 and\g =0, for the system.
AT 2me  Am(f—d) The matching procedure gives the normal concentration de-
cay as
YR 1
Zy:1+ 2_’776, (9) CA(t)N H (13)
where a double pole expansione Hnd 1/ —d), is used in In the region ofe>0, yg=2me is the nontrivial fixed

the calculation o, . The use of the double pole expansion point. But depending on the value af=3f+y—6, the

011109-3



LIGANG CHEN AND MICHAEL W. DEEM PHYSICAL REVIEW E 65011109

6 where Vi1 is the inverse Fourier transform ofik’ 2k.
&> Equation (16) can be interpreted as a modification of the
>0 continuity equation to take into account the long-range trans-
port induced by the Ly flights; it is derived in the Appen-
4 K &9 v dix. With the same form of the correlation function for the
3<0 potential, Eq.(3), we have
>
tp
2 £<0 S=f dde dta(x,t)[d;—D¢(V?) "2+ 8(t) Jay(x,t)
! 6<0 °
A t — 2 ) 2
+ Ef o|dxf0 dt[2a;(x,t)a?(x,t) + a?(x,t)a?(x,t)]
0 0 0.5 1 1.5 2
f —nof ddxai(x,O)—gf dtldtzf (2m)
FIG. 3. Different regions predicted by the flow equations for the kakaks
Levy flight system with disorder model | in two dimensions. The X 8(ky+ Ko+ kgt Kky)
flow equations are accurate for smglandf slightly less than 2.
The flow equations do not apply in region IV. o kfl_zkg_zk1~ (kqt+ko)ks- (kgt+ky)

2+y
matching procedure yields different results. Bt 0, i.e., in Kyt kel

region Il of Fig. 3, there is no nontrivial fixed point farg. - o -~ o
The corresponding asymptotic concentration decay is a little xai(ky,t)aike 1)ay(ks, t2)aj (ks ). (17

faster than that in region I, ) ] ] o
Again, to apply the field-theoretic renormalization proce-

1 1 )< t )_[2_5”” dure, the action is recast as

e to(>\ T amloDA2) o (19 .
S=J dde dta(x,t)[ d,— Z;Dr(V?) "2+ 8(t) Ja;(x,t)
For 5>0, i.e., in region Ill of Fig. 3Nk =44 is the fixed 0
point. The asymptotic concentration decay is the fastest 1 t _
+ E,uf*dZA)\RDfRJ ddeO dt[ 2a;(x,t)a?(x,t)
1

t —2/f
~— | . 15
47 8DAT %t to) 13

ca(t) _
’ +gi2(xat)ai2(x7t)]_luanRf d? a;(x,0)

The relationship between the concentration decay exponent 1
a and disorder rangg at a fixed value of is plotted in Fig - EMGZWRD?RJ dt; dtzf (2m)98(k,+ ks
4. Note that the strength of the disorder has no effect what- 1koksks
soever on the concentration decay. f—2 f—2
The reader will note that the yd_isqrderl can never slow 4y ik, Ky kg ko (Katko)Ks- (ks tka)
down the reaction in this model. This is quite an unexpected [kq+ko|2TY
result, as these reactions are expected to become transport . . . .
limited at long times, and disorder should slow down the Xai(kq,t)ai(ka,t1)a)(ks,t2)aj(kye,ts), (18

transport. Model I, Eq(2), is somewhat unphysical in that
this cannot happen due to the lack of disorder contribution tQ, hare ¢ =2+y, e=d,—d, and the rest of the parameters
1¥C ’ C ]

Zs. are the same as in action I.
The connections between the renormalized and unrenor-
I1l. REACTION IN A MODEL OF DISORDER THAT malized parameters are
OBEYS DETAILED BALANCE

Although Eq.(2) is often used in the literature, it does not ZiDr=Dj

guarantee a long-time Boltzmann distribution fGi(r,t).

That is, this form of the disorder does not satisfy detailed ,uf‘dZ}\ARDﬂf)\
balance. A more natural form of the Fokker-Planck equation
for Levy flights in random disorder is q
M Nor=Ng
JG(r,t)

= =V D{VG(r,t)+G(r,t)VV(r)], (16)

1Z,YrRDfR= - (19

011109-4



REACTION, LEVY FLIGHTS, AND QUENCHED DISORDER PHYSICAL REVIEW B55 011109
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II
0.95
1
I
0.9 ; ‘ . ‘
0 05 1 15 2 25
. . ‘ VD,
4-2f 6-3f 8-4f N .
y (fixed f) FIG. 5. Decay exponent for th&+ A—J reaction in the Ley
flight system that obeys detailed balance in two dimensiop&)
FIG. 4. Decay exponent for the+ A— & reaction in the Ley ~consXt™ ¢, The figure is shown fof =1.9. The reaction is trans-
flight system with disorder model | in two dimensions,(t) port limited on the solid curve and reaction limited on the dashed
~consiXt™“. curve. Note that the region>1 corresponds to “superfast” reac-

tion.
The diagrams are the same as those in Figs. 1 and 2, )
except that the diagrams from normal diffusion, Figé)1l port of Levy flights dominates over the disorder. This same
and 2b), are not present. A one-loop diagrammatic calcula-behavior, that the disorder must be adjusted to be compatible

tion gives with the transport, was found in the turbulent reactive flow
problem[10]. An interesting system arises when those two
7 -1+ "R effects are competitive, and so we requére 0, i.e.,y=0.
f 4re Under this constraintyg=y/D? does not flow. Very likely,
this result holds to all orders. Further analysis of the flow
7 1 £+ AR equation for Ay indicates two regimes. FOIy/Df2>4(2
A 2me Am(f—d) —f)m/3, or strong disordeig has a stable nontrivial fixed
point, given by
YR
Z,=1+ e’ (20)

* _ 37,_ * A2—f
)\R—477(f—2)+§—)\ A% fIDy. (23)

where a double-pole expansion ofldnd 1/f —d) is used f

in the calculation oz, . Following the matching procedure, we have
The dynamic exponent is given by

1 [t ~2[f+yI(4mD?)] +1
( ) (24

Jd YR t)~ —
2=y NZ=f+". (21) AU~ 15,
This suggests that the g flights are significantly slowed However, fory/Df<4(2—f)m/3, or weak disorder, there is
by the presence of the new random disorder term. That ig)0 nontrivial fixed point forng, and we have
when the detailed balance is obeyed, the disorder affects the
dynamical exponent. 1

. The,@ functions give us the flow equations frafin two calt)~ N + [4m(2—f) _3,lef2]Af—2Df

dimensions as

N 3y .2 1 t)[y/(Zwaz)]/[f+y/(4ﬂ'Df2)]
R (f— YRAR 7R X7\ (25
dl Pra=(T=2het 47 4w tit
d For the special case of/ D?=4(2— f)w/3, A\ decays mar-
%: —B,.= €VR. (22)  ginally, and we have a logarithmic correction to the decay
R
. o _ o 3In(t/t t) - @-Ha+n
This action is well behaved, and there is no regularization ca(t)~ r:( 5 o) (_) (26)
difficulty. And indeed, both momentum-shell renormalization 87DA 31+ )t \to

and field-theoretic renormalization yield identical flow equa- In the present case, unlike with the action of Sec. Il, the
tions to one-loop order. From the flow equations, o0, range and strength of disorder affect the decay exponent sig-
vgr flows to oo, indicating that the disorder dominates over nificantly. The relationship between the decay exponent and
the Levy flights. Fore<0, y flows to zero, indicating trans- v is plotted in Fig. 5. We see that a small amount of potential
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disorder leads to an increased rate of reaction in theyLe rate in the absence of an external potential is simply propor-
flights. But as the potential disorder increases further, the ratéonal to Eq.(1). In the presence of an external potential, we
of reaction eventually decreases. This figure is very muchmodify this rate in a way that satisfies detailed balaridsd,
similar to the one that showed up in the study of reactive .

turbulent flow[9]. In fact, if the Levy flight parameters are  @(ro—1n)=(D¢/ro)P(ra—ro)exp{—B[V(r,) —V(ry)1/2},
related to the turbulence parametf9$ asf=2—g* andy (A1)

_ 2 : . . :
=4mD{g} , these two models prediexactlythe same con-  \yherea(r,—r,) is the rate at which particles hop fromgto

centration decays. As suggested @}, in order for the reac- | . The master equation for the Green’s function of this pro-
tion to occur, multiple reactants must be trapped in regions ofess is

low potential energy. After the trapped reactants are depleted,

new reactants must be replenished by rapid transport to con- dG(r) q

tinue the reaction. Certain combinations of fast transpfort, I :f d™% a(r=x—rG(r-x)
<2, and disordery lead to “superfast” reaction@>1, as
shown in Fig. 5. Interestingly, this result means that the in-
homogeneous system can have a faster reaction rate than the
homogeneous, well-mixed system.

—f di% a(r—r+x)G(r). (A2)

We now expand this master equation to first ordegjri.e.,
IV. CONCLUSION we look for a Fokker-Planck equation that is linear in the

o potential. Noting thaP(k)=1—rk', we find
We have analyzed theA+A—O reaction in two-

dimensional Ley flight systems using two models of ran- aG (k) R BD; [ . R

dom disorder. For a common model in the literature, the g =—kafG(k)—Tf G(k—h)V(h)
dynamic exponent always locks to the microscopic step in- h

dexf, and the reaction decay exponent varies between 1 and X[kf+hf=|k—h|"]+0(82). (A3)

2/f. This surprisingly unphysical result that the disorder can-

not slow down the reaction is due to the fact that this modeln real space, we would write this equation as
does not satisfy detailed balance. For a model that does sat-

isfy detailed balance, on the other hand, the disorder can and ¢G(r)
does modify the transport properties of the system. When the st
disorder is adjusted to be compatible withvidlight statis-

tics, the reaction decay exponent first rises above unity and —-V(v¥) %G1, (A4)
then drops to zero as the strength of disorder is increase%. . .

These results are identical to those from reactive turbulent, oo We are interested in how the long-wavelength features

; g : of the potential affect the dynamics, i.e., we take into account
e 0Ny he Sl wae vectorcontiuions i &), e ke
port ’ an expansion of EqA3) for smallh. We find k'+h'—|k

—h|f)/2~tk'~%k-h/2 for 1<f<2. Realizing that the
Green’s function should relax to the Boltzmann distribution
at long times, and thdD; and 8 may be renormalized by a

This researciM.W.D) was supported by the Alfred P. finite amount by a variety of irrelevant operators, we con-

— Df(VZ)HZG"F BTIDf[(VZ)fIZ(GV)+G(V2)f/2V
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Sloan Foundation. clude that the proper long-wavelength theory should be
oG(k R R .
APPENDIX a(t ) __ kafG(k)_BDfJ G(k—h)V(h)k" %k-h,
In this appendix, we derive E416) from a master equa- " (A5)

tion. Particle transport by Iwy flight statistics can be mod-
eled by hopping dynamics of particles in space. The hoppingvhich is exactly Eq(16) with units of 8D; inserted.

[1] D. Mollison, J. R. Stat. Soc. Ser. B Method8B, 283 (1977. [9] M.W. Deem and J.-M. Park, Phys. Rev.5B, 3223(1998.

[2] A. Oftt, J.P. Bouchaud, D. Langevin, and W. Urbach, Phys.[10] N. le Tran, J.-M. Park, and M.W. Deem, J. Phys323 1407
Rev. Lett.65, 2201(1990. (1999.

[3]J. Klafter, A. Blumen, G. Zumofen, and M.F. Shlesinger, [11] D. Vernon and M. Howard, Phys. Rev.@3, 041116(2001).
Physica A168 637 (1990. [12] B.P. Lee, J. Phys. &7, 2633(1994.

[4] H.C. Fogedby, Phys. Rev. B8, 1690(1998. [13] V.E. Kravtsov, I.V. Lerner, and V.. Yudson, J. Phys. 18,

[5] J. Honkonen, Phys. Rev. &3, 327 (1996. L703 (1985.

[6] J. Honkonen, Phys. Rev. &, 7811(2000. [14] J. Zinn-Justin,Quantum Field Theory and Critical Phenom-

[7] J.-M. Park and M.W. Deem, Phys. Rev5#, 2681(1998. ena 3rd ed.(Clarendon Press, Oxford, 1996

[8] J.-M. Park and M.W. Deem, Phys. Rev.5#, 3618(1998. [15] V. Pham and M.W. Deem, J. Phys.34, 7235(1998.

011109-6



